skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yun, Hyeong Seok"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Nanoantennas and their arrays (metasurfaces) provide a versatile platform for controlling the coherence of thermal emission. Conventional designs rely on global heating, which impedes emission efficiency and on-chip integration. In this work, we propose an electrically driven metasurface composed of a Yagi-Uda nanoantenna array interconnected by S-shaped electrode wires, which enables the concurrent manipulation of thermal emission spectrally and directionally. A direct simulation approach based on the Wiener-chaos expansion method is employed for quantitative analysis. Our metasurface device exhibits a narrowband emission with high directivity, which is one order higher than that of a single nanorod antenna case. The modeling framework established in this work opens a promising route for realizing coherent mid-infrared emission by metasurfaces. 
    more » « less